skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Germaschewski, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Energy dissipation in collisionless plasmas is one of the most outstanding open questions in plasma physics. Magnetic reconnection and turbulence are two phenomena that can produce the conditions for energy dissipation. These two phenomena are closely related to each other in a wide range of plasmas. Turbulent fluctuations can emerge in critical regions of reconnection events, and magnetic reconnection can occur as a product of the turbulent cascade. In this study, we perform 2D particle-in-cell simulations of a reconnecting Harris current sheet in the presence of turbulent fluctuations to explore the effect of turbulence on the reconnection process in collisionless nonrelativistic pair plasmas. We find that the presence of a turbulent field can affect the onset and evolution of magnetic reconnection. Moreover, we observe the existence of a scale-dependent amplitude of magnetic field fluctuations above which these fluctuations are able to disrupt the growing of magnetic islands. These fluctuations provide thermal energy to the particles within the current sheet and preferential perpendicular thermal energy to the background population. 
    more » « less
  2. null (Ed.)